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Let T be a piecewise monotone, expanding, and C 2 mapping of the unit
interval to itself which admits an absolutely continuous invariant measure v = f dm.
S. Ulam has described a sequence of finite dimensional operators p" approximat­
ing the Frobenius-Perron operator associated to T, and conjectured that the
sequence of non-negative fixed points f" obtained for the P" converge strongly to
f. This was shown to be the case by T. Y. Li. A Boyarsky and S. Y. Lou gave a
partial generalization of this result to the case of expanding, C 2 Jablonski transfor­
mations on the multidimensional unit cube, obtaining weak approximation of the
invariant density. In this article we replace weak with strong convergence in the
multidimensional result using a compactness criterion due to Kolmogorov. We also
discuss both existence and approximation of the invariant density in the case of
general nonsingular transformations on If!d using the approximating sequence of
Ulam. (, 1994 Academic Pr(,;'~~. Inc

I. INTRODUCTION

Let (X, .'7, J.d be a Lebesgue probability space and let T: X - X be a
measurable, nonsingular mapping. (This means T- lA EO .'7 whenever A EO

,'7 and J-L 0 T- I « J-L,) In this setting the invariant measure problem (IMP)
asks: Does there exist a T-invariant measure v « J-L?

Associated to T are two positive operators ST: L~(X) - C'(X) and Pr :
L1(X) _ L1(X) defined by Srg = goT for all g EO C and J~PrfdJ-L =

/r-IA I dJ-L for all A EO ,'7 and I EO L I. Pr is called the Frobenius-Perron
operator associated to T. The IMP is equivalent to the existence of an
I EO L1(X), I ~ 0 and 11/111 = 1 with Prf = I (an invariant density). We
remark that P; = Sr so IIPTII = 1and 1 EO Spectrum(Pr ) although 1need
not be an eigenvalue admitting a non-negative eigenvector. (See, for
example, Adler [1] for an early example and Gora and Schmitt [5] for a
recent, more delicate example of transformations T which do not admit
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finite, absolutely continuous invariant measures.) On the other hand, there
is an extensive literature describing additional conditions on T which
ensure an affirmative answer to the IMP.

In case (X, .'7, p..) = ([0,1], .'7, m), the unit interval with Borel subsets
.'7 and Lebesgue measure m, S. Ulam [8] observed that PI is the
continuous analogue of a natural action Pn on the n-dimensional subspace
of L1([0, 1]) consisting of step functions formed with respect to a uniform
partition of [O,IJ into n intervals. Each P" may be shown to have a
non-negative fixed point fn and he asked if, provided T is known to admit
an invariant density f, does the (normalized) sequence In converge to I
in L1?

T. Y. Li [7] gave a positive answer to Ulam's question for the class of
piecewise C 2 and expanding transformations on the unit interval. In
addition he suggested that the fixed points I" may give a more efficient
approximation scheme for the invariant density f than that afforded by the
orbit of a single point and application of the ergodic theorem. His paper
contains some numerical evidence supporting this view for the transforma­
tion

(

2x,
T(x) = 2 _ C:

x4 2·'

o~x~~

~~x~1.

In [2], A. Boyarski and S. Y. Lou investigated Ulam's question for the
class of C 2 Jablonski transformations (defined in Jablonski [6]) on the
d-dimensional unit cube. Unfortunately, their methods led only to weak
approximation of the invariant density. The purpose of this note is to
present a full generalization of Li's strong approximation result to the
class of C 2 Jablonski transformations. We also observe that existence of
an invariant density is not necessary for the approximation result to hold.
This is because the principal issue for such an approximation, namely,
precompactness of the sequence of finite dimensional fixed points I", is
already sufficient to solve the IMP, although as we shall see, this is not
particularly useful in the specific case of C 2 Jablonski transformations,
providing only another solution of the IMP by way of the variational
inequality presented in [6].

We close this section by stating in a general setting the existence and
approximation result on which the remainder of this article is based.

THEOREM 1.1. Let T be a nonsingular translormation on (X, ,'7, p..).
Assume that there is a sequence 01 bounded linear operators P" on L1(X)
satisfying:

(0 P" ~ PT in strong operator topology

(2) For each n there exists I" ~ 0, 11/,,111 = 1 so P"I" = I".
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Then any limit point f of the sequence Un}~ ~ 1 is the density of an
absolutely continuous T-invariant probability measure on X.

COROLLARY 1.2. If the sequence Un} is precompact in L'(X) then T
admits an absolutely continuous, incariant probability measure f dJ.1. and
there is a subsequence fnk ~ f.

COROLLARY 1.3. If the sequence Un} is precompact in L1(X) and T has
a unique, absolutely continuous incariant probability measure f dJ.1., then
fn ~ f.

PROOF OF THEOREM 1.1. Let us assume, by dropping to a subsequence,
that fn ~ f. That f ~ °a.e. and that Ilflll = 1 are immediate. By the
uniform boundedness principle, sUPn II Pnll < 00, so the fact that PT f = f
follows from the estimate.

II. THE INVARIANT MEASURE PROBLEM:
EXISTENCE AND ApPROXIMATION

For the remainder of this article we shall restrict our discussion to the
case X = Id = [0, l]d, the d-dimensional unit cube, .'7 the Borel subsets
on I d

, and md the d-dimensional Lebesgue measure. We begin by
describing Ulam's approximating sequence of finite rank operators. For
the most part, we shall adopt the notation of [2]. L1 will denote the space
L1(Id, m d ) and we will write II· II for II· II,.

Let I d = U ~d~ 1 Ik where each Ik is a cube of the form Ik =

n1~ I[r;/l, (r, + O/l), °~ r, < I. For 1 ~ s, t ~ ld set p" = mils n
T-1I,)/miIs )' Let ,if be the ld-dimensional subspace of L 1 generated by
the characteristic functions {X I)~d~ ,. (We identify ,if in the natural way

with [R,d.) Let f E ,ii' say f = EscxsXIs and let P,: ,if -> .1, be defined by
the formula

PJ(x) = I:XI,(X) I:cxsPst'
, s
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That is, PI acts as right multiplication of the vector / = (a l , ••• , aid) E .jl

by the matrix (Pst)' ss.t sid.

Let QI denote the conditional expectation operator from L l to .j/'

The connection between PI and PT is contained in the following, whose
proof is a straightforward calculation to be found in [2].

Remark 2.2. The essential point is that PI is constructed using a
uniform partition. The same formula would be true for any PI constructed
with respect to a partition of r l into atoms of equal measure.

Since the matrix (Pst) has non-negative entries and row sums 1, the
classical Frobenius-Perron theory (see Gantmacher [4] for example) yields

PROPOSITION 2.3. For each I ~ 1 there exists / E .j/' / *- 0, / ~ 0, and
Pd = f. Without loss 0/ generality we may assume II/II = 1.

We extend PI to an operator on L' in the natural way

PROPOSITION 2.4.

Proof Enumerate the sequence of rectangular partItIOns by I d =

U r~ 1If), I = 1,2, .... Recall that IIQ/II = 1. Also, for all s, diam( I?)
IJ /--.00 / ...... 00

= vd II --> 0, hence Qd~ / strongly for each / E Lt. Now observe

II Pd - Prill = IIQIPrQd - Prill

:$ IIQI PTQd - QIPrll1 + IIQIPrI - Prill

:$ IIQd - /11 + IIQIPrI - Prill

with both terms tending to zero as I --> 00. I

We have shown that Ulam's approximating sequence PI satisfies the
conditions of Theorem 1.1. Indeed, the setting can be more general as the
only restrictions needed in this section have been that the PI be con-
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structed with respect to finite partitions !P, with atoms of uniform mea­
sure and diameters tending to zero. If the partitions .':JlJ, form a sequence
of refinements we may weaken the latter condition to V 7~ I!P, = Y.

III. THE CASE OF C 2
JABLONSKI TRANSFORMATIONS

We continue to adopt the notation of [2]. Let f3 = {D I , D 2 , ..• , Dp } be a
finite partition of I" into disjoint rectangles of the form D

J
= n;'~ ,[a'l' bi).

The transformation T is assumed to satisfy

(I) (Independence) The ith coordinate of the point T(x l , ••• , x,,)
depends only on the rectangular atom D j containing (x I' ... , x,,) and the
value of x,, More precisely, if (XI"'" x,,) E Dj then

where each cP/j: [a ,j , b,) -> [0,1] for 1 :s:; i :s:; d and 1 :s:; j :s:; p.

(S) (Smoothness) The cPu are C 2 functions on their domains.

(E) (Expansiveness)

It follows that T maps each Dj bijectively onto ad-dimensional subrect­
angle in I" with miTD) ;::: A"m,,(D/ These transformations are in some
sense the simplest multidimensional generalization of the piecewise mono­
tone and expanding interval maps. They were defined and investigated in
Jablonski [6] and are known in the literature as C 2 Jablonski Transforma­
tions. The goal in this section is to prove the following.

THEOREM 3.1. Let T: I" -> I" be a C 2 Jablonski transformation with
A > 2 and let P, be the approximating sequence of finite rank operators
described in the preceding section. For each I, denote by f, a fixed point for P,
with f, ;::: 0 and Ilf,11 = 1. Then there exists an fELl and subsequence
h -> f so p·ri = f. If T admits a unique absolutely continuous inl'ariant
probability measure v = f dm" then f, -> f.

We begin by reviewing a few known results about C 2 Jablonski transfor­
mations.
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Let A = n1~ I[aibi ] and let g: A ~ Iht Set, for each i, 1 ~ i ~ d

A

V g(x"x 2 , .. ·,X i _ I,X,+I'···'Xd)

= sup { t Ig(X\,X2"",Xi-I,Xt,Xi+I"",Xd)
k=l

265

<xJ<"'«=b;}.

Define 7T;: IRd~lRd-l, 7Ti(X",,,,Xd)=(X,,,,,,Xi_I,Xi+!',,,,Xd)' If
f: A ~ IR set

W1= inf(l Vgdmd_,!1 = gm d a.e. and V,. g measurable).
, ,,";lA) ;

A A A

Finally, set WI = max, <; < d W J. If Wf < 00 we say that I" is of
bounded Tonelli variation on-A. Let?: be the set of functions of the form

m

g = L gjXA,'
j~1

where each A j ~ I d is a d-dimensional rectangle and gj: I d ~ IR are C'
functions on A j'

The crucial variational inequality is to be found in the following.

THEOREM 3.1a. (Jablonski [6]). Let T satisfy (I), (S), and (E) above,
and assume ..\ > 2. Then there exist constants K T and a = 2/..\ < 1 so that
lor all f E ?:

I d I"

WPd ~ KTllfl\ + a W f·

We will also need to know that application of the conditional expecta-
tion operator does not increase the Tonelli variation.

LEMMA 3.2 [2, Lemma 6]. lifE L I then W"Qt! ~ WI J.
This lemma, combined with the previous theorem yields

LEMMA 3.3 [2, Lemma 7]. Let T be as in Theorem 3.1. For each n, let f"
be a fixed point of the approximating finite dimensional operator Pn gil'en by

I"

Lemma 2.1. Then { Wfn}~ ~ I is bounded.

640/79/2-8
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We sketch the proof for completeness.

Id Id Id Id

W fn = W QnPdn:O;; W Pdn :0;; Krllfnll + a W fn'

Id

Hence Wfn :0;; KT!(1 - a) < 00. I
Remark 3.4. The proof in [2] of Lemma 3.2 is a more or less straight­

forward induction on the case d = 1 which was already presented in [7].
Unfortunately, the one dimensional proof offered in [7] is incorrect.
However, an equally elementary and correct proof may be easily supplied
by the reader.

Precompactness of the collection of fixed points will be a consequence
of the following result due to Kolmogorov (see [3, IV.8.21] for its proof).
Theorem 3.1 will then follow immediately from Corollaries 1.2 and 1.3 and
this discussion in Section 2.

THEOREM 3.5. Let ffi ~ Limn) be a norm bounded set of functions and
assume the following limits are attained uniformly over f E ffi:

(1)

(2)

lim [If(x+.:lx)-f(x)ldx=O
.Jx->O J~"
.JXE ~"

lim [ If( x) Idx = O.
N->oo Jw -([ -N, Nl"l

Then ffi is a precompact subset of LI([Rn).

If f: [d -+ IR define j: IR d -+ IR by

I(x) = {~(x) if x E [d

if x E IR d - [d.

If m= UI}/= [, where II are extensions of the fixed points f" then
condition (2) in the above theorem is trivially satisfied. Condition (1) will
first be examined in the case d = 1. In the following V(U denotes the
usual variation of f: [0, 1] -+ IR.

PROPOSITION 3.6. Let f E L1([O, 1], m). Then for 0 < l.:lxl < 1

2 is the best possible constant in the above inequality.
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Proof Without loss of generality we assume VrU < 00. Let us also
assume first that I is non-decreasing and Ax > O. Then

f.1!(x+.:1x) -!(x)!
I'l

= r I/(x + .:1x)ldx + t- 4X
!(x + .:1x) - !(x) dx

-4x 0

+ t I!(x)/dx
1-4x

[4x fl
= Jr I/(x)I-/(x)dx+ I/(x)I+/(x)dx.

o 1-4x

If I does not change sign on [0, 1] we may upperbound the last expression
by

where to E [0,1] in an arbitrary point. On the other hand, if 1(0) < 0 and
10) > 0 then we have the same expression upperbounded by

Combining these, with similar calculations for .:1x < 0 one has, for non­
decreasing, bounded I and 0 < l.:1x I < 1

where to E [0, 1] is arbitrary.
If VU < 00 pick to E [0,1] so I/Uo)1 :::;; 11/111 and write 1= g - h, g, h

non-decreasing, bounded, and hCto} = O. Since! = g - h we obtain, using
the above estimates,

J:I ! (x + .:1 x) -!(x) Idx :::;; 21.:1 x I{VOl g + VOl h + Ig ( to) I + Ih(t 0) I}
I'l

:::;; 21.:1xl{VO
I/+I/(to)1}

:::;; 21.:1xl{Vdl + Il/llt}. I

Before proceeding with the multidimensional version of this lemma we
introduce some additional notation. If .:1x E /R

d
, say Ax =

(.:1x l , .:1x 2 , ••• , .:1xd ) and if x E /Rd we set XO = x and for 1 :::;; i :::;; d,
Xi = (Xl + .:1x I' X 2 + .:1x 2 ,·.·, Xi + .:1x j , x i + I"'" xd )·
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LEMMA 3.7. Let fELl. Then for .:1x E [Rd, II.:1xlll < 1, and .:1x "* 0

[d

~)j(x + .:1x) - j(x)ldmAx) ~ 2VdIl.:1xllt{ Wf+ II!II}.

[d

Proof Again, we assume without loss of generality Wf < oc and
observe

d

f~)j(x +.:1x) -j(x)ldmAx) ~ i~lf~)j(Xi) _j(xi-I)ldmAx)

d

= L: i 1/( Xi) - /( Xi-I) 1dmA x),
i~ l ~d

(* )

Jd

where each fj has been chosen so f = fi m d - a.e., V I is measurable,
and I

~ Wf + e.

Each of the summands in (*) is estimated as follows. Since

and

= I/(x, + .:1Xi'···' Xi + .:1xi , Xi+ I,···, x d )

-/(x i +.:1xi,···,Xi_ t +.:1xi_ t ,x" ... ,xd )l,
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Lemma 3.6 gives the following upperbound on terms (**):

269

(

rd
( 21.ixil V fi(X t +.ix" ... ,x i _ t +.ixi_1,X;, ... ,xd)

JlRd- I .
r

+ t1fi(x l + .ix" ... , X;-l + .ixi_" Xi"'" Xd) Idm(x;)) dm d- 1

:5: 21.iXil{ ~ f+ c} + 21.iX;I~)fi(x"""xd)ldmd
rd

:5: 21.ixil{ W f+ IIfll + c}.
Summing these estimates on each term in (*) and observing that c > 0
was arbitrary yields the desired inequality. I

This lemma completes the proof of Theorem 3.1. There is a partial
generalization of the theorem to the case 1 < A :5: 2, which we now
describe. For such A pick k so Ak > 2 and let cP = T k

• It is well known
that an invariant density for cP may be used to construct an invariant
density for T-we omit a discussion of this and turn our attention to its
approximation. Let Pn(cP) be the finite rank operators approximating P",
and (by dropping to a subsequence) assume that fn are fixed points for
P/(p) with fn -> f. Let Pn(T) be the approximating sequence for PT , and
observe that

for each 0 :5: I < k. Conclude that

satisfies h n E.i n and hn -> g = (l/k){f + '" +p;-lf}. Since hn ~ 0,
hn*-O we may set

so that
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